

ELECTRÓNICA ANALÓGICA GUÍA DOCENTE CURSO 2014-15

Titulación:	Grado en Ingeniería Electrónica Industrial y Automática					805G	
Asignatura:	Electrónica analógica					641	
Materia:	Electrónica						
Módulo:	Formación obligatoria en tecnología electrónica industrial						
Carácter:	Obligatoria		Curso:	3	Duración: Semestral		
Créditos ECT	rs : 6,00	Horas prese	nciales:	60,00	Horas estimadas de trabajo autónomo:		90,00
Idiomas en que se imparte la asignatura:				Español			
Idiomas del material de lectura o audiovisual:				Español			

DEPARTAMENTOS RESPONSABLES DE LA DOCENCIA

INGENIERÍA	A ELÉCTRICA							R109
Dirección:	C/ Luis de Ulloa, 20						Código postal:	26004
Localidad:	Logroño				Provincia:	La R	ioja	
Teléfono:	941299477	Fax:	941299478	Correo	electrónico:			

PROFESORADO PREVISTO

Profesor:	Zorzano Martínez, Antonio Moisés				Responsable de la asignatura			
Teléfono:	941299486	Correo ele	ctrónico:	antonio.zorzano@unirioja.es				
Despacho:	318	Edificio:	EDIFICIO I	DEPARTAMENTAL		Tutorías:	Consultar	

DESCRIPCIÓN DE LOS CONTENIDOS

- Fundamentos de Electrónica Analógica.
- Dispositivos y circuitos empleados en Electrónica Analógica.
- Estudio de bloques y sistemas empleados Electrónica Analógica.

REQUISITOS PREVIOS DE CONOCIMIENTOS Y COMPETENCIAS PARA PODER CURSAR CON ÉXITO LA ASIGNATURA

Recomendados para poder superar la asignatura.

Tener conocimientos del módulo de formación obligatoria común a la rama industrial, en las asignaturas de la materia Fundamentos de ingeniería eléctrica, electrónica y automática.

CONTEXTO

COMPETENCIAS

Competencias generales

- O3. Conocimiento en materias basicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- G1. Capacidad de análisis y síntesis
- G2. Capacidad de aplicar los conocimientos a la práctica
- G4. Comunicación oral y escrita de la propia lengua
- G7. Habilidades de búsqueda
- G8. Capacidad de aprendizaje
- G9. Habilidades de gestión de la información (habilidad para buscar y analizar información procedente de fuentes diversas)
- G10. Capacidad crítica y autocrítica
- G13. Resolución de problemas
- G14. Toma de decisiones
- G15. Trabajo en equipo
- G19. Habilidad para trabajar de forma autónoma

Competencias específicas

- E2.- Conocimiento de los fundamentos y aplicaciones de la electrónica analógica.
- E6.- Capacidad para diseñar sistemas electrónicos analógicos

RESULTADOS DEL APRENDIZAJE

El alumno:

- Conocerá y será capaz de explicar los fundamentos tecnológicos y el manejo de los dispositivos y bloques empleados en Electrónica Analógica.
- Será capaz de simular circuitos electrónicos analógicos utilizando los modelos de los dispositivos y bloques operativos.
- Será capaz de realizar montaje de circuitos electrónicos analógicos y comprobar su funcionamiento.
- Será capaz de seleccionar con criterio los dispositivos y módulos empleados en Electrónica Analógica.
- Será capaz de manejar con soltura el instrumental y equipamiento propio de laboratorios de Electrónica Analógica
- Será capaz de diseñar etapas de Electrónica analógica en aplicaciones industriales.

TEMARIO

TEMA 1.- INTRODUCCIÓN A LA ELECTRÓNICA ANALÓGICA

- 1.1. SIstemas analógicos y sistemas digitales.
- 1.2.- Conceptos básicos sobre amplificadores .- Modelos.
- 1.3.- Amplificadores ideales y amplificadores reales
- 1.4.- Amplificadores diferenciales.- Modelo funcional.- Justificación de su empleo.

TEMA 2.- Conceptos y herramientas utilizadas en E. Analógica

- 2.1.-Valores característicos de funciones
- 2.2.-Teoremas de circuitos empleados.

Principio de superposición.- Condiciones de aplicación

Circuito equivalente de valores medios, c.e. de alterna

2.3.-Cálculos de potencia.- Utilización de los desarrollos en serie de Fourier

TEMA 3.- DIODOS Y CIRCUITOS CON DIODOS

- 3.1.- Conceptos básicos sobre semiconductores
- 3.2. El diodo semiconductor: La unión PN.- Ecuación de Shockley: Definición de parámetros y su dependencia con la temperatura
- 3.3.- La ruptura de la unión.- Diodos Zener..- Aplicaciones
- 3.4.- Concepto de recta estática de carga y punto de operación
- 3.5.- Aplicaciones con diodos. Rectificación y filtrado
- 3.6.- Propiedades dinámicas de la unión PN.- Concepto de resistencia incremental, capacidad de difusión y capacidad de deplexión
- 3.7.- Conmutación dinámica en los diodos

TEMA 4.- AMPLIFICADORES OPERACIONALES

- 4.1.- Introducción. Conceptos básicos.- Procedimiento de análisis
- 4.2.- Modelos funcionales de un a.o. características.
- 4.3- Aplicaciones en lazo abierto
- 4.4.- Concepto y necesidad de la realimentación en el a.o.
- 4.5.- Condiciones para que un a.o. trabaje linealmente
- 4.6.- Ejemplos de realimentación negativa y positiva en un a.o. (amplificador operacional con redes de realimentación puramente resistivas
- 4.7.- Aplicaciones del a.o. funcionando linealmente
- 4.8.- Desviaciones de los amplificadores operacionales en trabajo lineal.- (efectos de segundo orden) .
- 4.9.- Derivador ideal y derivador práctico.- Integrador ideal e integrador práctico
- 4.10 .- Introducción a los filtros activos
- 4.11.- Aplicaciones con diodos
- 4.12.- Aplicaciones con realimentación positiva

TEMA 5.- TRANSISTORES BIPOLARES

- 5.1.- Introducción. tipos y modelos de transistores bipolares.
- 5.2.- Modelo de Ebers-Moll para el transistor bipolar npn
- 5.3.- Regiones de polarización de un transistor bipolar. modelos simplificados y aplicaciones en cada una de las regiones de polarización
- 5.4. Ecuaciones de polarización de una transistor bipolar. Recta de carga estática. Punto de operación. Análisis simplificado
- 5.5.- Análisis en gran señal. Concepto de recta dinámica de carga. Estrategias de diseño del P.O.
- 5.6.- Efectos de 2º Orden.- Propiedades dinámicas
- 5.7.- Modelo Incremental del transistor bipolar. Cálculo de los parámetros
- 5.8.- Etapas básicas (E.C., B.C., C.C) . Características y aplicaciones

TEMA 6.- TRANSISTORES FET

- 6.1.- Introducción. tipos y modelos de transistores FET
- 6.2.- Regiones de polarización de los FETS.:

Modelos simplificados y aplicaciones en cada una de las regiones de polarización

- 6.3. Polarización de los FETs . Recta de carga estática. Punto de operación. Análisis simplificado
- 6.4.- Análisis en gran señal. Concepto de recta dinámica de carga. Estrategias de diseño del P.O.

- 6.5.- Efectos de 2º Orden.- Propiedades dinámicas
- 6.6.- Modelo Incremental de los FETs. Cálculo de los parámetros
- 6.7.- Etapas básicas (D.C., G.C., S.C) . Características y aplicaciones

TEMA 7 CIRCUITOS CON VARIOS TRANSISTORES

- 7.1.- Amplificadores con dos transistores.; Amplificador cascodo, par Darlington, cargas activas,
- 7.2.- Fuentes de corriente básicas
- 7.3.- Amplificadores diferenciales: Diferentes topologías
- 7.4.- Estudio de la estructura interna simplificada de Amplificadores Operacionales
- 7.5.- Etapas de salida

BIBLIOGRAFÍA

Tipo:	Título				
Básica	Circuitos electrónicos : análisis, diseño y simulación / N. R. Malik Absys Biba				
Básica	Electrónica / Allan R. Hambley Absys Biba				
Complementaria	Circuitos microelectrónicos / Adel S. Sedra, Kenneth C. Smith Absys Biba				
Recursos en Internet					

METODOLOGÍA

Modalidades organizativas

Clases teóricas Seminarios y talleres Clases prácticas Tutorías

Métodos de enseñanza

Método expositivo - Lección magistral Estudio de casos Resolución de ejercicios y problemas

ORGANIZACIÓN

Actividades presenciales	Tamaño de grupo	Horas			
Clases prácticas de aula	Reducido	4,00			
Clases prácticas de laboratorio	Laboratorio	24,00			
Clases teóricas y pruebas presenciales de evaluación	Grande	32,00			
Total de horas presenciales		60,00			
Trabajo autónomo del estudiante		Horas			
- Discusión y análisis de resultados de prácticas					
- Elaboración de informes de las prácticas					
- Estudio autónomo individual o en grupo					
- Resolución de problemas y casos prácticos					
Total de horas de trabajo autónomo					
Total de horas		150,00			

EVALUACIÓN

Sistemas de evaluación	Recuperable	No Recup.
Pruebas escritas	60%	
Informes y memorias de prácticas		10%
Trabajos y proyectos	30%	
Total	100	0%

Comentarios

Para los estudiantes a tiempo parcial (reconocidos como tales por la Universidad), las actividades de evaluación no recuperable podrán ser sustituidas por otras, a especificar en cada caso. Esta posibilidad se habilitará siempre y cuando la causa que le impida la realización de la actividad de evaluación programada sea la que ha llevado al reconocimiento de la dedicación a tiempo parcial

Criterios críticos para superar la asignatura

Para la superación de la asignatura, además de superar el 50% de la máxima puntuación global, es condición necesaria haber obtenido una calificación en cada uno de los Ítems de que consta la evaluación, de al menos el 35% de su calificación máxima.