

# INGENIERÍA QUÍMICA GUÍA DOCENTE CURSO 2016-17

| Titulación:                                    | Grado en Química                               |         |                |                                      |           |           | 702G |
|------------------------------------------------|------------------------------------------------|---------|----------------|--------------------------------------|-----------|-----------|------|
| Asignatura:                                    | Ingeniería (                                   | 431     |                |                                      |           |           |      |
| Materia:                                       | Ingeniería Química                             |         |                |                                      |           |           |      |
| Módulo:                                        | Específico                                     |         |                |                                      |           |           |      |
| Modalidad de                                   | a de la titulaci                               | ón: Pre | sencial        |                                      |           |           |      |
| Carácter:                                      | Obligatoria                                    |         | Curso:         | 2                                    | Duración: | Semestral |      |
| Créditos EC                                    | <b>Créditos ECTS:</b> 6,00 Horas presenciales: |         | 60,00          | Horas estimadas de trabajo autónomo: |           | 90,00     |      |
| Idiomas en que se imparte la asignatura:       |                                                |         | Español        |                                      |           |           |      |
| Idiomas del material de lectura o audiovisual: |                                                |         | Inglés, Españo | ıl                                   |           |           |      |

#### DEPARTAMENTOS RESPONSABLES DE LA DOCENCIA

| QUÍMICA    |                      |      |           |        |              |      |                | R112  |
|------------|----------------------|------|-----------|--------|--------------|------|----------------|-------|
| Dirección: | C/ Madre de Dios, 51 |      |           |        |              |      | Código postal: | 26004 |
| Localidad: | Logroño              |      |           |        | Provincia:   | La R | ioja           |       |
| Teléfono:  | 941299620            | Fax: | 941299621 | Correo | electrónico: |      |                |       |

### **PROFESORADO PREVISTO**

| Profesor: | González Sáiz, José María |                                         |          |                                | Responsable de la asignatura |           |           |
|-----------|---------------------------|-----------------------------------------|----------|--------------------------------|------------------------------|-----------|-----------|
| Teléfono: | 941299634                 | Correo electrónico:                     |          | josemaria.gonzalez@unirioja.es |                              |           |           |
| Despacho: | 1118                      | Edificio: CENTRO CIENTÍFICO TECNOLÓGICO |          | )                              | Tutorías:                    | Consultar |           |
| Profesor: | Esteban Díez, Isabel      |                                         |          |                                |                              |           |           |
| Teléfono: | 941299635                 | Correo electrónico:                     |          | isabel.esteban@unirioja.es     |                              |           |           |
| Despacho: | 1109                      | Edificio:                               | CENTRO ( | CIENTÍFICO TECNOLÓGICO         | )                            | Tutorías: | Consultar |

# **DESCRIPCIÓN DE LOS CONTENIDOS**

# Contenidos de Teoría:

- Desarrollo histórico de los procesos químicos y la Industria Química.
- Sistemas de unidades y conversiones. Análisis dimensional.
- Balance macroscópico de materia. Proceso continuo y discontinuo.
- Balance macroscópico de energía. Proceso continuo y discontinuo.
- Fenómenos de Transporte: transporte en el seno de un fluido y entre fases.
- Transporte de Cantidad de Movimiento. Flujo de fluidos por conducciones.
- Transmisión de calor. Coeficientes individuales y globales de transmisión de calor.
- Introducción al diseño de cambiadores de calor.
- Transferencia de materia: mecanismos.
- Destilación de mezclas binarias. Destilación diferencial. Destilación flash.
- Rectificación de mezclas binarias. Diseño de columnas de rectificación.
- Extracción líquido líquido. Diseño de quipos para la extracción.
- Introducción a los reactores ideales.
- Reactor discontinuo de mezcla perfecta.
- Reactor continuo de flujo pistón.
- Reactor continuo de mezcla perfecta.

## Contenidos de Prácticas de Laboratorios:

- Transporte de cantidad de movimiento: Sedimentación.
- Transporte de cantidad de movimiento: Filtración a presión constante.
- Transporte de energía: Intercambiador de calor líquido-líquido.
- Transporte de materia: Extracción líquido-líquido.
- Transporte de materia: Rectificación continua de mezclas binarias.
- Reactores químicos: Estudio de los principales tipos de reactores utilizados en la industria: mezcla perfecta, flujo pistón y discontinuo.
- Reactores químicos: Simulación de reacciones en serie.



## REQUISITOS PREVIOS DE CONOCIMIENTOS Y COMPETENCIAS PARA PODER CURSAR CON ÉXITO LA ASIGNATURA

#### Recomendados para poder superar la asignatura.

- Se aconseja tener los conocimientos adquiridos en las asignaturas de Química, Complementos de Química, Física y Matemáticas I y Matemáticas II.

#### Asignaturas que proporcionan los conocimientos y competencias:

- Física
- Matemáticas I
- Matemáticas II
- Química

#### **CONTEXTO**

La asignatura Ingeniería Química pretende que el alumno conozca y domine operaciones de transferencia de materia, energía y cantidad de movimiento y sus aplicaciones, además del cálculo y diseño de los reactores químicos más importantes utilizados en la química industrial.

## **COMPETENCIAS**

## Competencias generales

- CGIT01: Ser capaz de analizar y sintetizar información.
- CGIT02: Mostrar capacidad de organización y planificación.
- CGIT03: Comunicar información de manera oral y escrita.
- CGIT06: Resolver problemas.
- CGIT07: Ser capaz de tomar decisiones.
- CGIP03: Adquirir y aplicar el compromiso ético.
- CGIP04: Razonar de manera crítica.
- CGIS01: Mostrar sensibilidad en temas medioambientales y sostenibilidad.
- CGS02: Realizar un aprendizaje autónomo.

### Competencias específicas

- CE11: Identificar las operaciones unitarias de Ingeniería Química y aplicarlas a la elaboración de proyectos
- CE16: Demostrar el conocimiento y la comprensión de los hechos esenciales, conceptos, principios y teorías relacionadas con las áreas de la Química.
- CE17: Resolver problemas cualitativos y cuantitativos según modelos previamente desarrollados.
- CE18: Reconocer y analizar nuevos problemas y plantear estrategias para solucionarlos.
- CE19: Evaluar, interpretar y sintetizar datos e información química.
- CE24: Interpretar los datos procedentes de observaciones y medidas en el laboratorio en términos de su significación y de las teorías que la sustentan.
- CE25: Procesar e informatizar datos químicos.
- CE26: Reconocer e implementar buenas prácticas científicas de medida y experimentación.
- CE28: Relacionar la Química con otras disciplinas.

## **RESULTADOS DEL APRENDIZAJE**

- Comprender y valorar el papel que juega la Ingeniería Química en la Industria Química, sector en el que potencialmente desarrollará su futura labor profesional.
- Conocer y usar con soltura conceptos básicos para el planteamiento y resolución de balances de materia y energía en cualquier operación unitaria y/o equipo de proceso asociado.
- Demostrar conocimiento y comprensión de los conceptos, principios y teorías fundamentales relacionadas con los distintos fenómenos de transporte que se dan en Química.
- Conocer y comprender los conceptos y terminología básica de las Operaciones Unitarias de la Ingeniería Química, y su aplicación a la tecnología industrial.
- Llevar a cabo un modelado elemental de las diversas operaciones unitarias, asociadas con los distintos fenómenos de transferencia.
- Identificar los distintos tipos de reactores químicos que se emplean a nivel industrial, y diseñar reactores sencillos.
- Aplicar los conocimientos teóricos y empíricos presentes en la bibliografía para la resolución de problemas, estudio de las variables y parámetros químicos dentro de un proceso, e interpretación y presentación de los resultados obtenidos.

### **TEMARIO**

#### PROGRAMA TEÓRICO Y PRÁCTICAS DE AULA:

- Tema 1: Fenómenos de transporte materia, energía y cantidad de movimiento.
- Tema 2.- Dinámica de fluidos.
- Tema 3.- Transmisión de calor



Tema 4.- Destilación y rectificación de mezclas binarias

Tema 5.- Extracción líquido-líquido

Tema 6: Diseño de reactores homogéneos

LISTADO DE PRÁCTICAS DE LABORATORIO

P ráctica nº 1: Visualización de flujos laminar y turbulento.

P ráctica nº 2: Mecánica de fluidos: pérdidas de carga.

P ráctica nº 3: Intercambiador de calor líquido-líquido.

P ráctica nº 4: Extracción líquido-líquido.

P ráctica nº 5: Rectificación de mezclas binarias.

P ráctica nº 6: Reactor discontinuo o de mezcla perfecta.

P ractica nº 7: Reactor tubular o flujo pistón

#### **BIBLIOGRAFÍA**

| Tipo:  | Título                                                          |
|--------|-----------------------------------------------------------------|
| Básica | Ingeniería química Absys Biba                                   |
| Básica | Problemas de ingeniería química: operaciones básicas Absys Biba |
| Básica | Ingeniería de las reacciones químicas Absys Biba                |
| Básica | Ingeniería química Absys Biba                                   |
| Básica | Chemical engineering Absys Biba                                 |
| Básica | El omnilibro de los reactores químicos Absys Biba               |
| Básica | Principios de los procesos químicos Absys Biba                  |

# Recursos en Internet

## **METODOLOGÍA**

# Modalidades organizativas

Clases teóricas Seminarios y talleres

Clases prácticas

Estudio y trabajo en grupo

Estudio y trabajo autónomo individual

# Métodos de enseñanza

Método expositivo - Lección magistral

Estudio de casos

Resolución de ejercicios y problemas

## **ORGANIZACIÓN**

| Actividades presenciales                                                                              | Tamaño de grupo | Horas |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------|-------|--|--|
| Clases teóricas                                                                                       | Grande          | 28,00 |  |  |
| Seminarios y talleres                                                                                 | Reducido        | 16,00 |  |  |
| Clases prácticas de laboratorio o aula informática                                                    | Laboratorio     | 14,00 |  |  |
| Pruebas presenciales de evaluación                                                                    | Grande          | 2,00  |  |  |
| Total de horas presenciales                                                                           |                 |       |  |  |
| Trabajo autónomo del estudiante                                                                       |                 |       |  |  |
| Estudio autónomo individual o en grupo                                                                |                 | 40,00 |  |  |
| Preparación de las prácticas y elaboración de cuaderno de prácticas                                   |                 |       |  |  |
| Resolución individual de ejercicios, cuestiones u otros trabajos, actividades en biblioteca o similar |                 |       |  |  |
| Tareas propuestas por el profesor                                                                     |                 |       |  |  |
| Total de horas de trabajo autónomo                                                                    |                 |       |  |  |
| Total de horas                                                                                        |                 |       |  |  |

# **EVALUACIÓN**

| Sistemas de evaluación           | Recuperable | No Recup. |
|----------------------------------|-------------|-----------|
| Informes y memorias de prácticas | 20%         |           |



| Sistemas de autoevaluación |     | 10% |
|----------------------------|-----|-----|
| Trabajos y proyectos       |     | 5%  |
| Pruebas escritas           | 65% |     |
| Total                      | 10  | 0%  |

#### Comentarios

Para los estudiantes a tiempo parcial (reconocidos como tales por la Universidad), las actividades de evaluación no recuperable podrán ser sustituidas por otras, a especificar en cada caso. Esta posibilidad se habilitará siempre y cuando la causa que le impida la realización de la actividad de evaluación programada sea la que ha llevado al reconocimiento de la dedicación a tiempo parcial.

# Criterios críticos para superar la asignatura

- Asistencia a las prácticas de laboratorio (≥ 80%)
- Obtener un 40% en las pruebas escritas.
- Obtener un 40% en los informes de prácticas